In Situ Loading and Time‐Resolved Synchrotron‐Based Phase Contrast Tomography for the Mechanical Investigation of Connective Knee Tissues: A Proof‐of‐Concept Study

Author:

Dejea Hector12,Pierantoni Maria1,Orozco Gustavo A.1,B. Wrammerfors E. Tobias1,Gstöhl Stefan J.3,Schlepütz Christian M.3,Isaksson Hanna1ORCID

Affiliation:

1. Department of Biomedical Engineering Lund University Box 118 Lund 221 00 Sweden

2. MAX IV Laboratory Lund University Lund 224 84 Sweden

3. Swiss Light Source Paul Scherrer Institute Villigen PSI 5232 Switzerland

Abstract

AbstractArticular cartilage and meniscus transfer and distribute mechanical loads in the knee joint. Degeneration of these connective tissues occurs during the progression of knee osteoarthritis, which affects their composition, microstructure, and mechanical properties. A deeper understanding of disease progression can be obtained by studying them simultaneously. Time‐resolved synchrotron‐based X‐ray phase‐contrast tomography (SR‐PhC‐µCT) allows to capture the tissue dynamics. This proof‐of‐concept study presents a rheometer setup for simultaneous in situ unconfined compression and SR‐PhC‐µCT of connective knee tissues. The microstructural response of bovine cartilage (n = 16) and meniscus (n = 4) samples under axial continuously increased strain, or two steps of 15% strain (stress–relaxation) is studied. The chondrocyte distribution in cartilage and the collagen fiber orientation in the meniscus are assessed. Variations in chondrocyte density reveal an increase in the top 40% of the sample during loading, compared to the lower half. Meniscus collagen fibers reorient perpendicular to the loading direction during compression and partially redisperse during relaxation. Radiation damage, image repeatability, and image quality assessments show little to no effects on the results. In conclusion, this approach is highly promising for future studies of human knee tissues to understand their microstructure, mechanical response, and progression in degenerative diseases.

Funder

Novo Nordisk Fonden

Vetenskapsrådet

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3