Enhanced CO2 Electroreduction to Multi‐Carbon Products on Copper via Plasma Fluorination

Author:

Zhou Ziqian12,Hu Xiaosong2,Li Jiye12,Xie Haijiao3,Wen Liaoyong2ORCID

Affiliation:

1. School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China

2. Research Center for Industries of the Future (RCIF) School of Engineering and Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province School of Engineering Westlake University Hangzhou 310024 China

3. Hangzhou Yanqu Information Technology Co., Ltd Hangzhou 310003 China

Abstract

AbstractThe electroreduction of carbon dioxide (CO2) to multi‐carbon (C2+) compounds offers a viable approach for the up‐conversion of greenhouse gases into valuable fuels and feedstocks. Nevertheless, current industrial applications face limitations due to unsatisfactory conversion efficiency and high overpotential. Herein, a facile and scalable plasma fluorination method is reported. Concurrently, self‐evolution during CO2 electroreduction is employed to control the active sites of Cu catalysts. The copper catalyst modified with fluorine exhibits an impressive C2+ Faradaic efficiency (FE) of 81.8% at a low potential of −0.56 V (vs a reversible hydrogen electrode) in an alkaline flow cell. The presence of modified fluorine leads to the exposure and stabilization of high‐activity Cu+ species, enhancing the adsorption of *CO intermediates and the generation of *CHO, facilitating the subsequent dimerization. This results in a notably improved conversion efficiency of 13.1% and a significant reduction in the overpotential (≈100 mV) for the C2+ products. Furthermore, a superior C2+ FE of 81.6% at 250 mA cm−2, coupled with an energy efficiency of 31.0%, can be achieved in a two‐electrode membrane electrode assembly electrolyzer utilizing the fluorine‐modified copper catalyst. The strategy provides novel insights into the controllable electronic modification and surface reconstruction of electrocatalysts with practical potential.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3