Vesicle Induced Receptor Sequestration: Mechanisms behind Extracellular Vesicle‐Based Protein Signaling

Author:

Staufer Oskar1234ORCID,Hernandez Bücher Jochen Estebano12,Fichtler Julius5,Schröter Martin12,Platzman Ilia123,Spatz Joachim P.1234

Affiliation:

1. Department for Cellular Biophysics Max Planck Institute for Medical Research Jahnstraße 29 Heidelberg D‐69120 Germany

2. Institute for Molecular Systems Engineering (IMSE) Heidelberg University Im Neuenheimer Feld 225 Heidelberg D‐69120 Germany

3. Max Planck‐Bristol Center for Minimal Biology University of Bristol 1 Tankard's Close Bristol BS8 1TD UK

4. Max Planck School Matter to Life Jahnstraße 29 Heidelberg D‐69120 Germany

5. Biophysical Engineering of Life Group Max Planck Institute for Medical Research Jahnstraße 29 Heidelberg D‐69120 Germany

Abstract

AbstractExtracellular vesicles (EVs) are fundamental for proper physiological functioning of multicellular organisms. By shuttling nucleic acids and proteins between cells, EVs regulate a plethora of cellular processes, especially those involved in immune signalling. However, the mechanistic understanding concerning the biophysical principles underlying EV‐based communication is still incomplete. Towards holistic understanding, particular mechanisms explaining why and when cells apply EV‐based communication and how protein‐based signalling is promoted by EV surfaces are sought. Here, the authors study vesicle‐induced receptor sequestration (VIRS) as a universal mechanism augmenting the signalling potency of proteins presented on EV‐membranes. By bottom‐up reconstitution of synthetic EVs, the authors show that immobilization of the receptor ligands FasL and RANK on EV‐like vesicles, increases their signalling potential by more than 100‐fold compared to their soluble forms. Moreover, the authors perform diffusion simulations within immunological synapses to compare receptor activation between soluble and EV‐presented proteins. By this the authors propose vesicle‐triggered local clustering of membrane receptors as the principle structural mechanism underlying EV‐based protein presentation. The authors conclude that EVs act as extracellular templates promoting the local aggregation of membrane receptors at the EV contact site, thereby fostering inter‐protein interactions. The results uncover a potentially universal mechanism explaining the unique structural profit of EV‐based intercellular signalling.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3