Efficient Mining of Anticancer Peptides from Gut Metagenome

Author:

Ma Yue123ORCID,Liu Xiaolin123,Zhang Xuan1,Yu Ying1,Li Yujing456,Song Moshi456,Wang Jun12ORCID

Affiliation:

1. CAS Key Laboratory of Pathogenic Microbiology and Immunology Institute of Microbiology, Chinese Academy of Sciences 100101 Beijing P. R. China

2. University of Chinese Academy of Sciences Beijing 100049 P. R. China

3. Max Planck Institute for Evolutionary Biology 24306 Plön Germany

4. State Key Laboratory of Membrane Biology Institute of Zoology Chinese Academy of Sciences 100101 Beijing P. R. China

5. Institute for Stem Cell and Regeneration Chinese Academy of Sciences 100101 Beijing P. R. China

6. Beijing Institute for Stem Cell and Regenerative Medicine 100101 Beijing P. R. China

Abstract

AbstractThe gut microbiome plays a crucial role in modulating host health and disease. It serves as a vast reservoir of functional molecules that hold great potential for clinical applications. One specific area of interest is identifying anticancer peptides (ACPs) for innovative cancer therapies. However, ACPs discovery is hindered by a heavy reliance on experimental methodologies. To overcome this limitation, we here employed a novel approach by leveraging the overlap between ACPs and antimicrobial peptides (AMPs). By combining well‐established AMP prediction methods with mining techniques in metagenomic cohorts, a total of 40 potential ACPs is identified. Out of the identified ACPs, 39 demonstrated inhibitory effects against at least one cancer cell line, exhibiting significant differences from known ACPs. Moreover, the therapeutic potential of the two most promising peptides in a mouse xenograft cancer model is evaluated. Encouragingly, the peptides exhibit effective tumor inhibition without any detectable toxic effects. Interestingly, both peptides display uncommon secondary structures, highlighting its distinctive characteristics. This findings highlight the efficacy of the multi‐center mining approach, which effectively uncovers novel ACPs from the gut microbiome. This approach has significant implications for expanding treatment options not only for CRC, but also for other cancer types.

Funder

National Key Research and Development Program of China

Beijing Nova Program

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3