Sequential Ubiquitination and Phosphorylation Epigenetics Reshaping by MG132‐Loaded Fe‐MOF Disarms Treatment Resistance to Repulse Metastatic Colorectal Cancer

Author:

Bu Zhaoting1,Yang Jianjun2,Zhang Yan2,Luo Tao1,Fang Chao2,Liang Xiayi12,Peng Qiuxia2,Wang Duo1,Lin Ningjing1,Zhang Kun23ORCID,Tang Weizhong1

Affiliation:

1. Department of Gastrointestinal Surgery Guangxi Medical University Cancer Hospital Guangxi Medical University. No. 71 Hedi Road Nanning Guangxi 530021 P. R. China

2. Central Laboratory and Department of Orthopaedics Shanghai Tenth People's Hospital Tongji University School of Medicine Tongji University. No. 301 Yan‐chang‐zhong Road Shanghai 200072 P. R. China

3. Central Laboratory Sichuan Academy of Medical Sciences Sichuan Provincial People's Hospital University of Electronic Science and Technology of China No. 32, West Second Section, First Ring Road Chengdu Sichuan 610072 P. R. China

Abstract

AbstractAbnormal epigenetic regulation is identified to correlate with cancer progression and renders tumor refractory and resistant to reactive oxygen species (ROS)‐based anti‐tumor actions. To address it, a sequential ubiquitination and phosphorylation epigenetics modulation strategy is developed and exemplified by the well‐established Fe‐metal‐organic framework (Fe‐MOF)‐based chemodynamic therapy (CDT) nanoplatforms that load the 26S proteasome inhibitor (i.e., MG132). The encapsulated MG132 can blockade 26S proteasome, terminate ubiquitination, and further inhibit transcription factor phosphorylation (e.g., NF‐κB p65), which can boost pro‐apoptotic or misfolded protein accumulations, disrupt tumor homeostasis, and down‐regulate driving genes expression of metastatic colorectal cancer (mCRC). Contributed by them, Fe‐MOF‐unlocked CDT is magnified to considerably elevate ROS content for repulsing mCRC, especially after combining with macrophage membrane coating‐enabled tropism accumulation. Systematic experiments reveal the mechanism and signaling pathway of such a sequential ubiquitination and phosphorylation epigenetics modulation and explain how it could blockade ubiquitination and phosphorylation to liberate the therapy resistance to ROS and activate NF‐κB‐related acute immune responses. This unprecedented sequential epigenetics modulation lays a solid foundation to magnify oxidative stress and can serve as a general method to enhance other ROS‐based anti‐tumor methods.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3