Thermoresponsive Hydrogel‐Enabled Thermostatic Photothermal Therapy for Enhanced Healing of Bacteria‐Infected Wounds

Author:

Fu Hao1,Xue Ke1,Zhang Yongxin1,Xiao Minghui1,Wu Kaiyu1,Shi Linqi1,Zhu Chunlei1ORCID

Affiliation:

1. Key Laboratory of Functional Polymer Materials of Ministry of Education State Key Laboratory of Medicinal Chemical Biology Frontiers Science Center for New Organic Matter College of Chemistry Nankai University Tianjin 300071 China

Abstract

AbstractPhotothermal therapy (PTT) has emerged as an attractive technique for the treatment of bacterial infections. However, the uncontrolled heat generation in conventional PTT inevitably causes thermal damages to healthy tissues and/or organs. It is thus essential to develop a smart and universal strategy to regulate the photothermal equilibrium temperature to a preset safe threshold. Herein, a thermoresponsive hydrogel‐enabled thermostatic PTT system for enhanced healing of bacteria‐infected wounds is reported. In this system, the near‐infrared (NIR)‐triggered heat generation by photothermal nanomaterials is spontaneously transferred to a thermoresponsive hydrogel with a lower critical solution temperature (LCST), leading to its rapid phase transition by forming considerable light‐scattering centers to block NIR penetration. Such a dynamic and reversible process automatically regulates the photothermal equilibrium temperature to the phase‐transition point of the LCST‐type hydrogel. In contrast to temperature‐uncontrolled conventional PTT with severe thermal damages, the thermoresponsive hydrogel‐enabled thermostatic PTT provides effective protection on healthy tissues and/or organs, which remarkably accelerates wound healing by efficient bacterial eradication. This study establishes a smart, simple and universal PTT platform, holding great promise in the safe and efficient treatment of bacterial skin infections.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3