Biomimetic Exogenous “Tissue Batteries” as Artificial Power Sources for Implantable Bioelectronic Devices Manufacturing

Author:

Yue Ouyang12,Wang Xuechuan13,Xie Long13,Bai Zhongxue12,Zou Xiaoliang12,Liu Xinhua12ORCID

Affiliation:

1. College of Bioresources Chemical and Materials Engineering Shaanxi University of Science & Technology Xi'an Shaanxi 710021 China

2. National Demonstration Center for Experimental Light Chemistry Engineering Education Shaanxi University of Science &Technology Xi'an Shaanxi 710021 China

3. College of Chemistry and Chemical Engineering Shaanxi University of Science & Technology Xi'an Shaanxi 710021 China

Abstract

AbstractImplantable bioelectronic devices (IBDs) have gained attention for their capacity to conformably detect physiological and pathological signals and further provide internal therapy. However, traditional power sources integrated into these IBDs possess intricate limitations such as bulkiness, rigidity, and biotoxicity. Recently, artificial “tissue batteries” (ATBs) have diffusely developed as artificial power sources for IBDs manufacturing, enabling comprehensive biological‐activity monitoring, diagnosis, and therapy. ATBs are on‐demand and designed to accommodate the soft and confining curved placement space of organisms, minimizing interface discrepancies, and providing ample power for clinical applications. This review presents the near‐term advancements in ATBs, with a focus on their miniaturization, flexibility, biodegradability, and power density. Furthermore, it delves into material‐screening, structural‐design, and energy density across three distinct categories of TBs, distinguished by power supply strategies. These types encompass innovative energy storage devices (chemical batteries and supercapacitors), power conversion devices that harness power from human‐body (biofuel cells, thermoelectric nanogenerators, bio‐potential devices, piezoelectric harvesters, and triboelectric devices), and energy transfer devices that receive and utilize external energy (radiofrequency‐ultrasound energy harvesters, ultrasound‐induced energy harvesters, and photovoltaic devices). Ultimately, future challenges and prospects emphasize ATBs with the indispensability of bio‐safety, flexibility, and high‐volume energy density as crucial components in long‐term implantable bioelectronic devices.

Funder

China Postdoctoral Science Foundation

Youth and Middle-aged Scientific and Technological Innovation Leading Talents Program of the Corps

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3