Multiplex Digital Methylation‐Specific PCR for Noninvasive Screening of Lung Cancer

Author:

Zhao Yang1ORCID,O'Keefe Christine M.1,Hsieh Kuangwen2,Cope Leslie3,Joyce Sonali C.45,Pisanic Thomas R.36,Herman James G.45,Wang Tza‐Huei126ORCID

Affiliation:

1. Department of Biomedical Engineering Johns Hopkins University Baltimore MD 21287 USA

2. Department of Mechanical Engineering Johns Hopkins University Baltimore MD 21218 USA

3. Department of Oncology Johns Hopkins University Baltimore MD 21287 USA

4. The UPMC Hillman Cancer Center University of Pittsburgh Pittsburgh PA 15232 USA

5. Division of Hematology and Oncology Department of Medicine, University of Pittsburgh Medical Center Pittsburgh PA United States

6. Johns Hopkins Institute for NanoBioTechnology Johns Hopkins University Baltimore MD 21218 USA

Abstract

AbstractThere remains tremendous interest in developing liquid biopsy assays for detection of cancer‐specific alterations, such as mutations and DNA methylation, in cell‐free DNA (cfDNA) obtained through noninvasive blood draws. However, liquid biopsy analysis is often challenging due to exceedingly low fractions of circulating tumor DNA (ctDNA), necessitating the use of extended tumor biomarker panels. While multiplexed PCR strategies provide advantages such as higher throughput, their implementation is often hindered by challenges such as primer‐dimers and PCR competition. Alternatively, digital PCR (dPCR) approaches generally offer superior performance, but with constrained multiplexing capability. This paper describes development and validation of the first multiplex digital methylation‐specific PCR (mdMSP) platform for simultaneous analysis of four methylation biomarkers for liquid‐biopsy‐based detection of non‐small cell lung cancer (NSCLC). mdMSP employs a microfluidic device containing four independent, but identical modules, housing a total of 40 160 nanowells. Analytical validation of the mdMSP platform demonstrates multiplex detection at analytical specificities as low as 0.0005%. The clinical utility of mdMSP is also demonstrated in a cohort of 72 clinical samples of low‐volume liquid biopsy specimens from patients with computed tomography (CT)‐scan indeterminant pulmonary nodules, exhibiting superior clinical performance when compared to traditional MSP assays for noninvasive detection of early‐stage NSCLC.

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3