Boosting Charge Utilization in Self‐Powered Photodetector for Real‐Time High‐Throughput Ultraviolet Communication

Author:

Ouyang Tian12,Zhao Xuan12,Xun Xiaochen12,Gao Fangfang12,Zhao Bin12,Bi Shuxin12,Li Qi12,Liao Qingliang12,Zhang Yue12ORCID

Affiliation:

1. Academy for Advanced Interdisciplinary Science and Technology Beijing Advanced Innovation Center for Materials Genome Engineering University of Science and Technology Beijing Beijing 100083 P. R. China

2. Beijing Key Laboratory for Advanced Energy Materials and Technologies School of Materials Science and Engineering University of Science and Technology Beijing Beijing 100083 P. R. China

Abstract

AbstractUltraviolet (UV) communication is a cutting‐edge technology in communication battlefields, and self‐powered photodetectors as their optical receivers hold great potential. However, suboptimal charge utilization has largely limited the further performance enhancement of self‐powered photodetectors for high‐throughput communication application. Herein, a self‐powered Ti3C2Tx‐hybrid poly(3,4 ethylenedioxythiophene):poly‐styrene sulfonate (PEDOT:PSS)/ZnO (TPZ) photodetector is designed, which aims to boost charge utilization for desirable applications. The device takes advantage of photothermal effect to intensify pyro‐photoelectric effect as well as the increased conductivity of the PEDOT:PSS, which significantly facilitated charge separation, accelerated charge transport, and suppressed interface charge recombination. Consequently, the self‐powered TPZ photodetector exhibits superior comprehensive performance with high responsivity of 12.3 mA W−1 and fast response time of 62.2 µs, together with outstanding reversible and stable cyclic operation. Furthermore, the TPZ photodetector has been successfully applied in an integrated UV communication system as the self‐powered optical receiver capable of real‐time high‐throughput information transmission with ASCII code under 9600 baud rate. This work provides the design insight of highly performing self‐powered photodetectors to achieve high‐efficiency optical communication in the future.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3