A Near‐Infrared Fluorogenic Probe for Rapid, Specific, and Ultrasensitive Detection of Sphingosine in Living Cells and In Vivo

Author:

Chen Yanyan1,Hao Tingting1,Wang Jing1,Chen Yiming2,Wang Xiuxiu1,Wei Wei3,Zhao Jing1ORCID,Qian Yong4ORCID

Affiliation:

1. State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China

2. School of Engineering Vanderbilt University Nashville 37235 USA

3. State Key Laboratory of Pharmaceutical Biotechnology School of Life Sciences Nanjing University Nanjing 210023 China

4. Jiangsu Collaborative Innovation Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China

Abstract

AbstractSphingosine (Sph) plays important roles in various complex biological processes. Abnormalities in Sph metabolism can result in various diseases, including neurodegenerative disorders. However, due to the lack of rapid and accurate detection methods, understanding sph metabolic in related diseases is limited. Herein, a series of near‐infrared fluorogenic probes DMS‐X (X = 2F, F, Cl, Br, and I) are designed and synthesized. The fast oxazolidinone ring formation enables the DMS‐2F to detect Sph selectively and ultrasensitively, and the detection limit reaches 9.33 ± 0.41 nm. Moreover, it is demonstrated that DMS‐2F exhibited a dose‐ and time‐dependent response to Sph and can detect sph in living cells. Importantly, for the first time, the changes in Sph levels induced by Aβ42 oligomers and H2O2 are assessed through a fluorescent imaging approach, and further validated the physiological processes by which Aβ42 oligomers and reactive oxygen species (ROS)‐induce changes in intracellular Sph levels. Additionally, the distribution of Sph in living zebrafish is successfully mapped by in vivo imaging of a zebrafish model. This work provides a simple and efficient method for probing Sph in living cells and in vivo, which will facilitate investigation into the metabolic process of Sph and the connection between Sph and disease pathologies.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Fundamental Research Funds for the Central Universities

National Science Fund for Distinguished Young Scholars

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3