Integrated Mixed Potential Gas Sensor with Efficient Structure for Discriminative Volatile Organic Compounds Detection

Author:

Lv Siyuan1,Gu Tianyi1,Pu Qi1,Wang Bin1,Jia Xiaoteng1,Sun Peng12,Wang Lijun1,Liu Fangmeng12ORCID,Lu Geyu12

Affiliation:

1. State Key Laboratory of Integrated Optoelectronics College of Electronic Science and Engineering Jilin University 2699 Qianjin Street Changchun 130012 P. R. China

2. International Center of Future Science Jilin University 2699 Qianjin Street Changchun 130012 P. R. China

Abstract

AbstractAmid growing interest in the precise detection of volatile organic compounds (VOCs) in industrial field, the demand for highly effective gas sensors is at an all‐time high. However, traditional sensors with their classic single‐output signal, bulky and complex integrated structure when forming array often involve complicated technology and high cost, limiting their widespread adoption. Here, this study introduces a novel approach, employing an integrated YSZ‐based (YSZ: yttria‐stabilized zirconia) mixed potential sensor equipped with a triple‐sensing electrode array, to efficiently detect and differentiate six types of VOCs gases. This innovative sensor integrates NiSb2O6, CuSb2O6, and MgSb2O6 sensing electrodes (SEs), which are sensitive to pentane, isoprene, n‐propanol, acetone, acetic acid, and formaldehyde gases. Through feature engineering based on intuitive spike‐based response values, it accentuates the distinct characteristics of every gas. Eventually, an average classification accuracy of 98.8% and an overall R‐squared error (R2) of 99.3% for concentration regression toward six target gases can be achieved, showcasing the potential to quantitatively distinguish between industrial hazardous VOCs gases.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3