Polydopamine‐Modified 2D Iron (II) Immobilized MnPS3 Nanosheets for Multimodal Imaging‐Guided Cancer Synergistic Photothermal‐Chemodynamic Therapy

Author:

Xie Hanhan12ORCID,Yang Ming12,He Xiaoli12,Zhan Zhen12,Jiang Huaide12,Ma Yanmei12,Hu Chengzhi12ORCID

Affiliation:

1. Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems Department of Mechanical and Energy Engineering Southern University of Science and Technology Shenzhen 518055 China

2. Guangdong Provincial Key Laboratory of Human‐Augmentation and Rehabilitation Robotics in Universities Southern University of Science and Technology Shenzhen 518055 China

Abstract

AbstractManganese phosphosulphide (MnPS3), a newly emerged and promising member of the 2D metal phosphorus trichalcogenides (MPX3) family, has aroused abundant interest due to its unique physicochemical properties and applications in energy storage and conversion. However, its potential in the field of biomedicine, particularly as a nanotherapeutic platform for cancer therapy, has remained largely unexplored. Herein, a 2D “all‐in‐one” theranostic nanoplatform based on MnPS3 is designed and applied for imaging‐guided synergistic photothermal‐chemodynamic therapy. (Iron) Fe (II) ions are immobilized on the surface of MnPS3 nanosheets to facilitate effective chemodynamic therapy (CDT). Upon surface modification with polydopamine (PDA) and polyethylene glycol (PEG), the obtained Fe‐MnPS3/PDA‐PEG nanosheets exhibit exceptional photothermal conversion efficiency (η = 40.7%) and proficient pH/NIR‐responsive Fenton catalytic activity, enabling efficient photothermal therapy (PTT) and CDT. Importantly, such nanoplatform can also serve as an efficient theranostic agent for multimodal imaging, facilitating real‐time monitoring and guidance of the therapeutic process. After fulfilling the therapeutic functions, the Fe‐MnPS3/PDA‐PEG nanosheets can be efficiently excreted from the body, alleviating the concerns of long‐term retention and potential toxicity. This work presents an effective, precise, and safe 2D “all‐in‐one” theranostic nanoplatform based on MnPS3 for high‐efficiency tumor‐specific theranostics.

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3