A Network Toxicology Approach for Mechanistic Modelling of Nanomaterial Hazard and Adverse Outcomes

Author:

del Giudice Giusy12,Serra Angela123,Pavel Alisa1,Torres Maia Marcella1,Saarimäki Laura Aliisa12,Fratello Michele1,Federico Antonio123,Alenius Harri45,Fadeel Bengt5,Greco Dario1236ORCID

Affiliation:

1. Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology Tampere University Tampere 33520 Finland

2. Division of Pharmaceutical Biosciences, Faculty of Pharmacy University of Helsinki Helsinki 00790 Finland

3. Tampere Institute for Advanced Study Tampere University Tampere 33100 Finland

4. Human Microbiome Research Program (HUMI) University of Helsinki Helsinki 00014 Finland

5. Institute of Environmental Medicine Karolinska Institutet Stockholm 171 77 Sweden

6. Institute of Biotechnology University of Helsinki Helsinki 00790 Finland

Abstract

AbstractHazard assessment is the first step in evaluating the potential adverse effects of chemicals. Traditionally, toxicological assessment has focused on the exposure, overlooking the impact of the exposed system on the observed toxicity. However, systems toxicology emphasizes how system properties significantly contribute to the observed response. Hence, systems theory states that interactions store more information than individual elements, leading to the adoption of network based models to represent complex systems in many fields of life sciences. Here, they develop a network‐based approach to characterize toxicological responses in the context of a biological system, inferring biological system specific networks. They directly link molecular alterations to the adverse outcome pathway (AOP) framework, establishing direct connections between omics data and toxicologically relevant phenotypic events. They apply this framework to a dataset including 31 engineered nanomaterials with different physicochemical properties in two different in vitro and one in vivo models and demonstrate how the biological system is the driving force of the observed response. This work highlights the potential of network‐based methods to significantly improve their understanding of toxicological mechanisms from a systems biology perspective and provides relevant considerations and future data‐driven approaches for the hazard assessment of nanomaterials and other advanced materials.

Funder

European Research Council

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3