Hydrazine‐Assisted Acidic Water Splitting Driven by Iridium Single Atoms

Author:

Luo Fang1,Pan Shuyuan2,Xie Yuhua2,Li Chen1,Yu Yingjie1,Bao Haifeng1,Yang Zehui2ORCID

Affiliation:

1. College of Materials Science and Engineering State Key Laboratory of New Textile Materials & Advanced Processing Technology Wuhan Textile University Wuhan 430200 P. R. China

2. Sustainable Energy Laboratory Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 388 Lumo RD Wuhan 430074 P. R. China

Abstract

AbstractWater splitting, an efficient technology to produce purified hydrogen, normally requires high cell voltage (>1.5 V), which restricts the application of single atoms electrocatalyst in water oxidation due to the inferior stability, especially in acidic environment. Substitution of anodic oxygen evolution reaction (OER) with hydrazine oxidation reaction (HzOR) effectually reduces the overall voltage. In this work, the utilization of iridium single atom (Ir‐SA/NC) as robust hydrogen evolution reaction (HER) and HzOR electrocatalyst in 0.5 m H2SO4 electrolyte is reported. Mass activity of Ir‐SA/NC is as high as 37.02 A mgIr−1 at overpotential of 50 mV in HER catalysis, boosted by 127‐time than Pt/C. Besides, Ir‐SA/NC requires only 0.39 V versus RHE to attain 10 mA cm−2 in HzOR catalysis, dramatically lower than OER (1.5 V versus RHE); importantly, a superior stability is achieved in HzOR. Moreover, the mass activity at 0.5 V versus RHE is enhanced by 83‐fold than Pt/C. The in situ Raman spectroscopy investigation suggests the HzOR pathway follows *N2H4→*2NH2→*2NH→2N→*N2→N2 for Ir‐SA/NC. The hydrazine assisted water splitting demands only 0.39 V to drive, 1.25 V lower than acidic water splitting.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3