Temperature‐Triggered Adhesive Bioelectric Electrodes with Long‐Term Dynamic Stability and Reusability

Author:

Lai Huiting12,Liu Yan12,Cheng Yin1,Shi Liangjing1,Wang Ranran13ORCID,Sun Jing1

Affiliation:

1. State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences 1295 Ding Xi Road Shanghai 200050 China

2. Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences 19 Yuquan Road Beijing 100049 China

3. School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences 1 Sub‐lane Xiangshan Hangzhou 310024 China

Abstract

AbstractBioelectric electrodes with low modulus and high adhesion have been intensively pursued, as they afford conformal and strong bonding at skin‐electrode interface to improve the fidelity and stability of electrophysiological signals. However, during detachment, tough adhesion can cause pain or skin allergy; worse still, the soft electrodes can suffer damage due to excessive stretch/torsion, hampering long‐term, dynamic, and multiple uses. Herein, a bioelectric electrode is proposed by transferring silver nanowires (AgNWs) network to the surface of bistable adhesive polymer (BAP). The phase transition temperature of BAP is tuned to be slightly below skin temperature at 30 °C. Triggered by skin heat, the BAP electrode achieves low modulus and high adhesion within seconds, allowing robust skin‐electrode interface under dry, wet, and body‐moving conditions. Ice bag treatment can dramatically stiffen the electrode and reduce the adhesion, which allows painless detachment and avoids electrode damage. Meanwhile, the AgNWs network with biaxial wrinkled microstructure remarkably promotes the electro‐mechanical stability of the BAP electrode. The BAP electrode successfully combines long‐term (7 days) and dynamic (body movements, sweat, underwater) stability, reusability (at least ten times), and minimized skin irritation during electrophysiological monitoring. The high signal‐to‐noise ratio and dynamic stability are demonstrated in the application of piano‐playing training.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3