Affiliation:
1. State Key Laboratory of Medicinal Chemical Biology College of Pharmacy Nankai University Haihe Education Park, 38 Tongyan Road Tianjin 300353 P. R. China
2. Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction Tianjin Stomatological Hospital The Affiliated Stomatological Hospital of Nankai University Tianjin 300041 P. R. China
3. School of Medicine Nankai University Tianjin 300071 P. R. China
Abstract
AbstractBacterial infection‐induced inflammatory response could cause irreversible death of pulp tissue in the absence of timely and effective therapy. Given that, the narrow structure of root canal limits the therapeutic effects of passive diffusion‐drugs, considerable attention has been drawn to the development of nanomotors, which have high tissue penetration abilities but generally face the problem of insufficient fuel concentration. To address this drawback, dual‐fuel propelled nanomotors (DPNMs) by encapsulating L‐arginine (L‐Arg), calcium peroxide (CaO2) in metal‐organic framework is developed. Under pathological environment, L‐Arg could release nitric oxide (NO) by reacting with reactive oxygen species (ROS) to provide the driving force for movement. Remarkably, the depleted ROS could be supplemented through the reaction between CaO2 with acids abundant in the inflammatory microenvironment. Owing to high diffusivity, NO achieves further tissue penetration based on the first‐stage propulsion of nanomotors, thereby removing deep‐seated bacterial infection. Results indicate that the nanomotors effectively eliminate bacterial infection based on antibacterial activity of NO, thereby blocking inflammatory response and oxidative damage, forming reparative dentine layer to avoid further exposure and infection. Thus, this work provides a propagable strategy to overcome fuel shortage and facilitates the therapy of deep lesions.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Subject
General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献