Cellular Energy Cycle Mediates an Advection‐Like Forward Cell Flow to Support Collective Invasion

Author:

Zhang Jian12ORCID,Mosier Jenna A.1,Wu Yusheng1,Waddle Logan2,Taufalele Paul V.1,Wang Wenjun1,Sun Heng1,Reinhart‐King Cynthia A.1ORCID

Affiliation:

1. Department of Biomedical Engineering Vanderbilt University 2301 Vanderbilt Place Nashville TN 37235 USA

2. Department of Biomedical Engineering University of Arkansas 790 W. Dickson St Fayetteville AR 72701 USA

Abstract

AbstractCollective cell migration is a model for nonequilibrium biological dynamics, which is important for morphogenesis, pattern formation, and cancer metastasis. The current understanding of cellular collective dynamics is based primarily on cells moving within a 2D epithelial monolayer. However, solid tumors often invade surrounding tissues in the form of a stream‐like 3D structure, and how biophysical cues are integrated at the cellular level to give rise to this collective streaming remains unclear. Here, it is shown that cell cycle‐mediated bioenergetics drive a forward advective flow of cells and energy to the front to support 3D collective invasion. The cell division cycle mediates a corresponding energy cycle such that cellular adenosine triphosphate (ATP) energy peaks just before division. A reaction–advection–diffusion (RAD) type model coupled with experimental measurements further indicates that most cells enter an active division cycle at rear positions during 3D streaming. Once the cells progress to a later stage toward division, the high intracellular energy allows them to preferentially stream toward the tip and become leader cells. This energy‐driven cellular flow may be a fundamental characteristic of 3D collective dynamics based on thermodynamic principles important for not only cancer invasion but also tissue morphogenesis.

Funder

National Institutes of Health

W. M. Keck Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3