Targeting Grancalcin Accelerates Wound Healing by Improving Angiogenesis in Diabetes

Author:

Xiang Peng12ORCID,Jiang Meng12,Chen Xin12,Chen Linyun12,Cheng Yalun12,Luo Xianghang12,Zhou Haiyan12,Zheng Yongjun3ORCID

Affiliation:

1. Department of Endocrinology Endocrinology Research Center Xiangya Hospital of Central South University Changsha Hunan 410008 China

2. National Clinical Research Center for Geriatric Disorders Xiangya Hospital Changsha Hunan 410008 China

3. Department of Burn Surgery the First Affiliated Hospital of Naval Medical University Shanghai 200433 China

Abstract

AbstractChronic diabetic wounds are a serious complication of diabetes and often result in limb amputations and confer high mortality rates. The proinflammatory secretome in the wound perpetuates defective neovascularization and contributes to dysregulated tissue repair. This study aims to design a gelatin methacrylamide (GelMA) hydrogel to sustained the release of grancalcin‐neutralizing antibody (GCA‐NAb) and evaluate it as a potential scaffold to promote diabetic wound healing. Results show that the expression of grancalcin(GCA), a protein secreted by bone marrow‐derived immune cells, is elevated in the wound sites of individuals and animals with diabetic ulcers. Genetic inhibition of grancalcin expression accelerates vascularization and healing in an animal model. Mechanistic studies show that grancalcin binds to transient receptor potential melastatin 8(TRPM8) and partially inactivates its downstream signaling pathways, thereby impairing angiogenesis in vitro and ex vivo. Systemic or topical administration of a GCA‐NAb accelerate wound repair in mice with diabetes. The data suggest that GCA is a potential therapeutic target for the treatment of diabetic ulcers.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Science Fund for Distinguished Young Scholars of Hunan Province

Shanghai Rising-Star Program

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3