Cell‐Like Synthetic Supramolecular Soft Materials Realized in Multicomponent, Non‐/Out‐of‐Equilibrium Dynamic Systems

Author:

Kubota Ryou1ORCID,Hamachi Itaru12ORCID

Affiliation:

1. Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University Katsura Nishikyo‐ku Kyoto 615‐8510 Japan

2. JST‐ERATO Hamachi Innovative Molecular Technology for Neuroscience Kyoto University Nishikyo‐ku Katsura 615‐8530 Japan

Abstract

AbstractLiving cells are complex, nonequilibrium supramolecular systems capable of independently and/or cooperatively integrating multiple bio‐supramolecules to execute intricate physiological functions that cannot be accomplished by individual biomolecules. These biological design strategies offer valuable insights for the development of synthetic supramolecular systems with spatially controlled hierarchical structures, which, importantly, exhibit cell‐like responses and functions. The next grand challenge in supramolecular chemistry is to control the organization of multiple types of supramolecules in a single system, thus integrating the functions of these supramolecules in an orthogonal and/or cooperative manner. In this perspective, the recent progress in constructing multicomponent supramolecular soft materials through the hybridization of supramolecules, such as self‐assembled nanofibers/gels and coacervates, with other functional molecules, including polymer gels and enzymes is highlighted. Moreover, results show that these materials exhibit bioinspired responses to stimuli, such as bidirectional rheological responses of supramolecular double‐network hydrogels, temporal stimulus pattern‐dependent responses of synthetic coacervates, and 3D hydrogel patterning in response to reaction–diffusion processes are presented. Autonomous active soft materials with cell‐like responses and spatially controlled structures hold promise for diverse applications, including soft robotics with directional motion, point‐of‐care disease diagnosis, and tissue regeneration.

Funder

Japan Science and Technology Agency

Exploratory Research for Advanced Technology

Japan Society for the Promotion of Science

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3