Unveiling Hidden Hyperuniformity: Radial Turing Pattern Formation of Marangoni‐Driven SiO2 Nanoparticles on Liquid Metal Surface

Author:

Guo Jinjian123ORCID,Chen Jie4,Zhao Kang5,Bai Xuedong136ORCID,Wang Wenlong136

Affiliation:

1. State Key Laboratory for Surface Physics Beijing National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of Sciences Beijing 100190 China

2. Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education Shanxi Normal University Taiyuan 030000 China

3. School of Physical Sciences University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China

4. School of Electronic and Information Engineering Tiangong University Tianjin 300387 China

5. MOE Key Laboratory of Bioinformatics Beijing Advanced Innovation Center for Structural Biology and Frontier Research Center for Biological Structure Center for Synthetic and Systems Biology School of Life Sciences Tsinghua University Beijing 100190 China

6. Songshan Lake Materials Laboratory Dongguan Guangdong 523808 China

Abstract

AbstractMastering the self‐organization of nanoparticle morphologies is pivotal in soft matter physics and film growth. Silicon dioxide (SiO2) nanoparticles are an archetypical model of nanomotor in soft matter. Here, the emphasis is on the self‐organizing behavior of SiO2 nanoparticles under extreme conditions. It is unveiled that manipulating the states of the metal substrate profoundly dictates the motion characteristics of SiO2 nanoparticles. This manipulation triggers the emergence of intricate morphologies and distinctive patterns. Employing a reaction‐diffusion model, the fundamental roles played by Brownian motion and Marangoni‐driven motion in shaping fractal structures and radial Turing patterns are demonstrated, respectively. Notably, these radial Turing patterns showcase hyperuniform order, challenging conventional notions of film morphology. These discoveries pave the way for crafting non‐equilibrium morphological materials, poised with the potential for self‐healing, adaptability, and innovative applications.

Funder

National Natural Science Foundation of China

Chinese Academy of Sciences

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3