Right On Time: Ultrafast Charge Separation Before Hybrid Exciton Formation

Author:

Gierster Lukas12,Turkina Olga3,Deinert Jan‐Christoph2,Vempati Sesha2,Baeta Elsie2,Garmshausen Yves1,Hecht Stefan14,Draxl Claudia34,Stähler Julia12

Affiliation:

1. Department of Chemistry Humboldt‐Universität zu Berlin Brook‐Taylor‐Str. 2 12489 Berlin Germany

2. Department of Physical Chemistry Fritz‐Haber‐Institut der Max‐Planck‐Gesellschaft Faradayweg 4‐6 14195 Berlin Germany

3. Department of Physics Humboldt‐Universität zu Berlin Newtonstr. 15 12489 Berlin Germany

4. Center for the Science of Materials Berlin Humboldt‐Universität zu Berlin Zum Großen Windkanal 2 12489 Berlin Germany

Abstract

AbstractOrganic/inorganic hybrid systems offer great potential for novel solar cell design combining the tunability of organic chromophore absorption properties with high charge carrier mobilities of inorganic semiconductors. However, often such material combinations do not show the expected performance: while ZnO, for example, basically exhibits all necessary properties for a successful application in light‐harvesting, it was clearly outpaced by TiO2 in terms of charge separation efficiency. The origin of this deficiency has long been debated. This study employs femtosecond time‐resolved photoelectron spectroscopy and many‐body ab initio calculations to identify and quantify all elementary steps leading to the suppression of charge separation at an exemplary organic/ZnO interface. It is demonstrated that charge separation indeed occurs efficiently on ultrafast (350 fs) timescales, but that electrons are recaptured at the interface on a 100 ps timescale and subsequently trapped in a strongly bound (0.7 eV) hybrid exciton state with a lifetime exceeding 5 µs. Thus, initially successful charge separation is followed by delayed electron capture at the interface, leading to apparently low charge separation efficiencies. This finding provides a sufficiently large time frame for counter‐measures in device design to successfully implement specifically ZnO and, moreover, invites material scientists to revisit charge separation in various kinds of previously discarded hybrid systems.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3