Super‐Low‐Dose Functional and Molecular Photoacoustic Microscopy

Author:

Zhang Yachao1ORCID,Chen Jiangbo1,Zhang Jie2,Zhu Jingyi1,Liu Chao1,Sun Hongyan2,Wang Lidai13

Affiliation:

1. Department of Biomedical Engineering City University of Hong Kong Hong Kong SAR 999077 China

2. Department of Chemistry and COSADAF (Centre of Super‐Diamond and Advanced Films) City University of Hong Kong Hong Kong SAR 999077 China

3. City University of Hong Kong Shenzhen Research Institute Shenzhen China 518057

Abstract

AbstractPhotoacoustic microscopy can image many biological molecules and nano‐agents in vivo via low‐scattering ultrasonic sensing. Insufficient sensitivity is a long‐standing obstacle for imaging low‐absorbing chromophores with less photobleaching or toxicity, reduced perturbation to delicate organs, and more choices of low‐power lasers. Here, the photoacoustic probe design is collaboratively optimized and a spectral‐spatial filter is implemented. A multi‐spectral super‐low‐dose photoacoustic microscopy (SLD‐PAM) is presented that improves the sensitivity by ≈33 times. SLD‐PAM can visualize microvessels and quantify oxygen saturation in vivo with ≈1% of the maximum permissible exposure, dramatically reducing potential phototoxicity or perturbation to normal tissue function, especially in imaging of delicate tissues, such as the eye and the brain. Capitalizing on the high sensitivity, direct imaging of deoxyhemoglobin concentration is achieved without spectral unmixing, avoiding wavelength‐dependent errors and computational noises. With reduced laser power, SLD‐PAM can reduce photobleaching by ≈85%. It is also demonstrated that SLD‐PAM achieves similar molecular imaging quality using 80% fewer contrast agents. Therefore, SLD‐PAM enables the use of a broader range of low‐absorbing nano‐agents, small molecules, and genetically encoded biomarkers, as well as more types of low‐power light sources in wide spectra. It is believed that SLD‐PAM offers a powerful tool for anatomical, functional, and molecular imaging.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3