Melanoma Derived Exosomes Amplify Radiotherapy Induced Abscopal Effect via IRF7/I‐IFN Axis in Macrophages

Author:

Wang Lu1,Shen Kangjie1,Gao Zixu1,Ren Ming1,Wei Chenlu1,Yang Yang1,Li Yinlam1,Zhu Yu1,Zhang Simin2,Ding Yiteng1,Zhang Tianyi1,Li Jianrui1,Zhu Ming1,Zheng Shaoluan3,Yang Yanwen1,Du Shisuo4,Wei Chuanyuan1,Gu Jianying13ORCID

Affiliation:

1. Department of Plastic Surgery Zhongshan Hospital Fudan University Shanghai 200032 P. R. China

2. Department of Plastic Surgery Shanghai Geriatric Medical Center Shanghai 201104 P. R. China

3. Department of Plastic Surgery Zhongshan Hospital Xiamen Branch Fudan University Xiamen 361015 P. R. China

4. Department of Radiotherapy Zhongshan Hospital Fudan University Shanghai 200032 P. R. China

Abstract

AbstractRadiotherapy (RT) can induce tumor regression outside the irradiation field, known as the abscopal effect. However, the detailed underlying mechanisms remain largely unknown. A tumor‐bearing mouse model is successfully constructed by inducing both subcutaneous tumors and lung metastases. Single‐cell RNA sequencing, immunofluorescence, and flow cytometry are performed to explore the regulation of tumor microenvironment (TME) by RT. A series of in vitro assays, including luciferase reporter, RNA Pulldown, and fluorescent in situ hybridization (FISH) assays, are performed to evaluate the detailed mechanism of the abscopal effect. In addition, in vivo assays are performed to investigate combination therapy strategies for enhancing the abscopal effect. The results showed that RT significantly inhibited localized tumor and lung metastasis progression and improved the TME. Mechanistically, RT promoted the release of tumor‐derived exosomes carrying circPIK3R3, which is taken up by macrophages. circPIK3R3 promoted Type I interferon (I‐IFN) secretion and M1 polarization via the miR‐872‐3p/IRF7 axis. Secreted I‐IFN activated the JAK/STAT signaling pathway in CD8+ T cells, and promoted IFN‐γ and GZMB secretion. Together, the study shows that tumor‐derived exosomes promote I‐IFN secretion via the circPIK3R3/miR‐872‐3p/IRF7 axis in macrophages and enhance the anti‐tumor immune response of CD8+ T cells.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Xiamen Municipal Bureau of Science and Technology

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3