Nanomedicines Reprogram Synovial Macrophages by Scavenging Nitric Oxide and Silencing CA9 in Progressive Osteoarthritis

Author:

Yan Yi1ORCID,Lu An1,Dou Yun2,Zhang Zhen2,Wang Xiang‐Yu1,Zhai Lin1,Ai Li‐Ya2,Du Ming‐Ze2,Jiang Lin‐Xia1,Zhu Yuan‐Jun1,Shi Yu‐Jie1,Liu Xiao‐Yan1,Jiang Dong2ORCID,Wang Jian‐Cheng13ORCID

Affiliation:

1. Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Beijing 100191 China

2. Department of Sports Medicine Peking University Third Hospital Beijing 100191 China

3. Laboratory of Innovative Formulations and Pharmaceutical Excipients Ningbo Institute of Marine Medicine Peking University Beijing 315832 China

Abstract

AbstractOsteoarthritis (OA) is a progressive joint disease characterized by inflammation and cartilage destruction, and its progression is closely related to imbalances in the M1/M2 synovial macrophages. A two‐pronged strategy for the regulation of intracellular/extracellular nitric oxide (NO) and hydrogen protons for reprogramming M1/M2 synovial macrophages is proposed. The combination of carbonic anhydrase IX (CA9) siRNA and NO scavenger in “two‐in‐one” nanocarriers (NAHA‐CaP/siRNA nanoparticles) is developed for progressive OA therapy by scavenging NO and inhibiting CA9 expression in synovial macrophages. In vitro experiments demonstrate that these NPs can significantly scavenge intracellular NO similar to the levels as those in the normal group and downregulate the expression levels of CA9 mRNA (≈90%), thereby repolarizing the M1 macrophages into the M2 phenotype and increasing the expression levels of pro‐chondrogenic TGF‐β1 mRNA (≈1.3‐fold), and inhibiting chondrocyte apoptosis. Furthermore, in vivo experiments show that the NPs have great anti‐inflammation, cartilage protection and repair effects, thereby effectively alleviating OA progression in both monoiodoacetic acid‐induced early and late OA mouse models and a surgical destabilization of medial meniscus‐induced OA rat model. Therefore, the siCA9 and NO scavenger “two‐in‐one” delivery system is a potential and efficient strategy for progressive OA treatment.

Funder

National Natural Science Foundation of China

Ministry of Science and Technology

Peking University

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3