Affiliation:
1. Photoelectric Conversion Energy Materials and Devices Key Laboratory of Anhui Province Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education School of Material Science and Engineering & School of Chemistry and Chemical Engineering Anhui University 230601 Hefei P. R. China
2. School of Environmental Science and Engineering Sun Yat‐sen University Guangzhou 510006 P. R. China
Abstract
AbstractRegulating the charge migration and separation in photoactive materials is a great challenge for developing photoelectrochemical (PEC) applications. Herein, inspired by capacitors, well‐defined CuInSe2/N‐doped carbon (CISe/N‐C) nanorod arrays are synthesized by Cu/In‐metal organic frame‐derived method. Like the charge process of capacitor, the N‐doped carbon can capture the photogenerated electron of CISe, and the strong interfacial coupling between CISe and N‐doped carbon can modulate the charge migration and separation. The optimized the CISe/N‐C photoanode achieves a maximum photocurrent of 4.28 mA cm−2 at 1.23 V versus reversible hydrogen electrode (RHE) in neutral electrolyte solution under AM 1.5 G simulated sunlight (100 mW cm‐2), which is 8.4 times higher than that of the CuInSe2 photoanode (0.51 mA cm‐2). And a benefit of the strong electronic coupling between CISe and N‐doped carbon, the charge transfer rate is increased to 1.3–13 times higher than that of CISe in the range of 0.6–1.1 V versus RHE. The interfacial coupling effects on modulating the carrier transfer dynamics are investigated by Kelvin probe force microscopy analysis and density functional theory calculation. This work provides new insights into bulk phase carrier modulation to improve the performance of photoanode for PEC water splitting.
Funder
National Natural Science Foundation of China
Science and Technology Planning Project of Guangdong Province
Subject
General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献