Osmolar Modulation Drives Reversible Cell Cycle Exit and Human Pluripotent Cell Differentiation via NF‐κВ and WNT Signaling

Author:

Chui Jonathan Sai‐Hong1ORCID,Izuel‐Idoype Teresa1ORCID,Qualizza Alessandra1,de Almeida Rita Pires1,Piessens Lindsey1,van der Veer Bernard K.1ORCID,Vanmarcke Gert1ORCID,Malesa Aneta1ORCID,Athanasouli Paraskevi1ORCID,Boon Ruben1ORCID,Vriens Joris2ORCID,van Grunsven Leo3ORCID,Koh Kian Peng1ORCID,Verfaillie Catherine M.1ORCID,Lluis Frederic1ORCID

Affiliation:

1. KU Leuven Department of Development and Regeneration Stem Cell Institute Herestraat 49 Leuven 3000 Belgium

2. Laboratory of Endometrium, Endometriosis and Reproductive Medicine Department of Development and Regeneration KU Leuven Herestraat 49 Leuven 3000 Belgium

3. Liver Cell Biology Research Group Vrije Universiteit Brussel Laarbeeklaan 103 Brussels 1090 Belgium

Abstract

AbstractTerminally differentiated cells are commonly regarded as the most stable cell state in adult organisms, characterized by growth arrest while fulfilling their specialized functions. A better understanding of the mechanisms involved in promoting cell cycle exit will improve the ability to differentiate pluripotent cells into mature tissues for both pharmacological and therapeutic use. Here, it demonstrates that a hyperosmolar environment enforces a protective p53‐independent quiescent state in immature hepatoma cells and in pluripotent stem cell‐derived models of human hepatocytes and endothelial cells. Prolonged culture in hyperosmolar conditions stimulates changes in gene expression promoting functional cell maturation. Interestingly, hyperosmolar conditions do not only trigger growth arrest and cellular maturation but are also necessary to maintain this maturated state, as switching back to plasma osmolarity reverses the changes in expression of maturation and proliferative markers. Transcriptome analysis revealed sequential stages of osmolarity‐regulated growth arrest followed by cell maturation, mediated by activation of NF‐κВ, and repression of WNT signaling, respectively. This study reveals that a modulated increase in osmolarity serves as a biochemical signal to promote long‐term growth arrest and cellular maturation into different lineages, providing a practical method to generate differentiated hiPSCs that resemble their mature counterpart more closely.

Funder

Horizon 2020 Framework Programme

Onderzoeksraad, KU Leuven

Fonds Wetenschappelijk Onderzoek

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3