Macroporous Granular Hydrogels Functionalized with Aligned Architecture and Small Extracellular Vesicles Stimulate Osteoporotic Tendon‐To‐Bone Healing

Author:

Song Wei1,Ma Zhijie2,Wang Xin1,Wang Yifei1,Wu Di1,Wang Chongyang1,He Dan2,Kong Lingzhi1,Yu Weilin1,Li Jiao Jiao3,Li Haiyan4ORCID,He Yaohua15ORCID

Affiliation:

1. Department of Orthopedic Surgery Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai 200233 China

2. School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200030 China

3. School of Biomedical Engineering Faculty of Engineering and IT University of Technology Sydney Sydney New South Wales 2007 Australia

4. Chemical and Environmental Engineering Department School of Engineering STEM College RMIT University 124 La Trobe St. Melbourne Victoria 3000 Australia

5. Department of Orthopedic Surgery Jinshan District Central Hospital affiliated to Shanghai University of Medicine & Health Sciences Jinshan Branch of Shanghai Sixth People's Hospital Shanghai 201500 China

Abstract

AbstractOsteoporotic tendon‐to‐bone healing (TBH) after rotator cuff repair (RCR) is a significant orthopedic challenge. Considering the aligned architecture of the tendon, inflammatory microenvironment at the injury site, and the need for endogenous cell/tissue infiltration, there is an imminent need for an ideal scaffold to promote TBH that has aligned architecture, ability to modulate inflammation, and macroporous structure. Herein, a novel macroporous hydrogel comprising sodium alginate/hyaluronic acid/small extracellular vesicles from adipose‐derived stem cells (sEVs) (MHA‐sEVs) with aligned architecture and immunomodulatory ability is fabricated. When implanted subcutaneously, MHA‐sEVs significantly improve cell infiltration and tissue integration through its macroporous structure. When applied to the osteoporotic RCR model, MHA‐sEVs promote TBH by improving tendon repair through macroporous aligned architecture while enhancing bone regeneration by modulating inflammation. Notably, the biomechanical strength of MHA‐sEVs is approximately two times higher than the control group, indicating great potential in reducing postoperative retear rates. Further cell‐hydrogel interaction studies reveal that the alignment of microfiber gels in MHA‐sEVs induces tenogenic differentiation of tendon‐derived stem cells, while sEVs improve mitochondrial dysfunction in M1 macrophages (Mφ) and inhibit Mφ polarization toward M1 via nuclear factor‐kappaB (NF‐κb) signaling pathway. Taken together, MHA‐sEVs provide a promising strategy for future clinical application in promoting osteoporotic TBH.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3