A Bacterial mRNA‐Lysis‐Mediated Cargo Release Vaccine System for Regulated Cytosolic Surveillance and Optimized Antigen Delivery

Author:

Li Yu‐an12,Sun Yanni12,Zhang Yuqin12,Li Quan12,Wang Shifeng3,Curtiss Roy3,Shi Huoying124ORCID

Affiliation:

1. College of Veterinary Medicine Yangzhou University Yangzhou Jiangsu 225000 China

2. Jiangsu Co‐innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses Yangzhou 225000 China

3. Department of Infectious Diseases and Immunology College of Veterinary Medicine University of Florida Gainesville FL 32611‐0880 USA

4. Joint International Research Laboratory of Agriculture and Agri‐Product Safety Yangzhou University (JIRLAAPS) Yangzhou 225000 China

Abstract

AbstractEngineered vector‐based in vivo protein delivery platforms have made significant progress for both prophylactic and therapeutic applications. However, the lack of effective release strategies results in foreign cargo being trapped within the vector, restricting the provision of significant performance benefits and enhanced therapeutic results compared to traditional vaccines. Herein, the development of a Salmonella mRNA interferase regulation vector (SIRV) system is reported to overcome this challenge. The genetic circuits are engineered that (1) induce self‐lysis to release foreign antigens into target cells and (2) activate the cytosolic surveillance cGAS‐STING axis by releasing DNA into the cytoplasm. Delayed synthesis of the MazF interferase regulates differential mRNA cleavage, resulting in a 36‐fold increase in the delivery of foreign antigens and modest activation of the inflammasome, which collectively contribute to the marked maturation of antigen‐presenting cells (APCs). Bacteria delivering the protective antigen SaoA exhibits excellent immunogenicity and safety in mouse and pig models, significantly improving the survival rate of animals challenged with multiple serotypes of Streptococcus suis. Thus, the SIRV system enables the effective integration of various modular components and antigen cargos, allowing for the generation of an extensive range of intracellular protein delivery systems using multiple bacterial species in a highly efficient manner.

Funder

National Natural Science Foundation of China

Higher Education Discipline Innovation Project

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3