Potassium‐Rich Iron Hexacyanoferrate/Carbon Cloth Electrode for Flexible and Wearable Potassium‐Ion Batteries

Author:

Li Xinyue1,Zhang Xiaolin2,Xu Junmin1ORCID,Duan Zhixia1,Xu Yue2,Zhang Xiaosheng3,Zhang Lingling34,Wang Ye1,Chu Paul K.2

Affiliation:

1. Key Laboratory of Material Physics Ministry of Education School of Physics and Microelectronics Zhengzhou University Zhengzhou 450001 P. R. China

2. Department of Physics Department of Materials Science and Engineering and Department of Biomedical Engineering City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong 999077 P. R. China

3. School of Materials Science and Engineering Zhengzhou University Zhengzhou 450001 P. R. China

4. Department of Chemical and Biological Engineering The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong 999077 P. R. China

Abstract

AbstractThe fast development of flexible and wearable electronics increases the demand for flexible secondary batteries, and the emerging high‐performance K‐ion batteries (KIBs) have shown immense promise for the flexible electronics due to the abundant and cost‐effective potassium resources. However, the implementation of flexible cathodes for KIBs is hampered by the critical issues of low capacity, rapid capacity decay with cycles, and limited initial Coulombic efficiency. To address these pressing issues, a freestanding K‐rich iron hexacyanoferrate/carbon cloth (KFeHCF/CC) electrode is designed and fabricated by cathodic deposition. This innovative binder‐free and self‐supporting KFeHCF/CC electrode not only provides continuous conductive channels for electrons, but also accelerates the diffusion of potassium ions through the active electrode–electrolyte interface. Moreover, the nanosized potassium iron hexacyanoferrate particles limit particle fracture and pulverization to preserve the structure and stability during cycling. As a result, the K‐rich KFeHCF/CC electrode shows a reversible discharging capacity of 110.1 mAh g−1 at 50 mA g−1 after 100 cycles in conjunction with capacity retention of 92.3% after 1000 cycles at 500 mA g−1. To demonstrate the commercial feasibility, a flexible tubular KIB is assembled with the K‐rich KFeHCF/CC electrode, and excellent flexibility, capacity, and stability are observed.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3