Continuous Spinning of High‐Tough Hydrogel Fibers for Flexible Electronics by Using Regional Heterogeneous Polymerization

Author:

Wu Shaoji1,Gong Caihong1,Wang Zichao1,Xu Sijia1,Feng Wen2,Qiu Zhiming1,Yan Yurong13ORCID

Affiliation:

1. School of Materials Science and Engineering South China University of Technology Guangzhou 510641 P. R. China

2. Guangzhou Fiber Product Testing Institute Guangzhou 511447 P. R. China

3. Key Lab of Guangdong High Property & Functional Polymer Materials Guangzhou 510640 P. R. China

Abstract

AbstractHydrogel fibers have attracted substantial interest for application in flexible electronics due to their ionic conductivity, high specific surface area, and ease of constructing multidimensional structures. However, universal continuous spinning methods for hydrogel fibers are yet lacking. Based on the hydrophobic mold induced regional heterogeneous polymerization, a universal self‐lubricating spinning (SLS) strategy for the continuous fabrication of hydrogel fibers from monomers is developed. The universality of the SLS strategy is demonstrated by the successful spinning of 10 vinyl monomer‐based hydrogel fibers. Benefiting from the universality of the SLS strategy, the SLS strategy can be combined with pre‐gel design and post‐treatment toughening to prepare highly entangled polyacrylamide (PAM) and ionic crosslinked poly(acrylamide‐co‐acrylic acid)/Fe3+ (W‐PAMAA/Fe3+) hydrogel fibers, respectively. In particular, the W‐PAMAA/Fe3+ hydrogel fiber exhibited excellent mechanical properties (tensile stress > 4 MPa, tensile strain > 400%) even after 120 days of swelling in the pH of 3–9. Furthermore, owing to the excellent multi‐faceted performance and one‐dimensionality of W‐PAMAA/Fe3+ hydrogel fibers, flexible sensors with different dimensions and functions can be constructed bottom‐up, including the one‐dimensional (1D) strain sensor, two‐dimensional (2D) direction sensor, three‐dimensional (3D) pressure sensor, and underwater communication sensor to present the great potential of hydrogel fibers in flexible electronics.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3