Gibbs Adsorption and Zener Pinning Enable Mechanically Robust High‐Performance Bi2Te3‐Based Thermoelectric Devices

Author:

Zhang Chaohua1ORCID,Lai Qiangwen1,Wang Wu2,Zhou Xuyang3,Lan Kailiang1,Hu Lipeng1,Cai Bowen4,Wuttig Matthias56,He Jiaqing2,Liu Fusheng1,Yu Yuan5ORCID

Affiliation:

1. College of Materials Science and Engineering Shenzhen Key Laboratory of Special Functional Materials Shenzhen Engineering Laboratory for Advanced Technology of Ceramics Guangdong Research Center for Interfacial Engineering of Functional Materials Institute of Deep Underground Sciences and Green Energy Shenzhen University 518060 Shenzhen P. R. China

2. Department of Physics Southern University of Science and Technology Shenzhen 518055 P. R. China

3. Department of Microstructure Physics and Alloy Design Max‐Planck‐Institut für Eisenforschung GmbH 40237 Düsseldorf Germany

4. Shenzhen Jianju Technology Co. Ltd. 518000 Shenzhen P. R. China

5. Institute of Physics (IA) RWTH Aachen University 52056 Aachen Germany

6. PGI 10 (Green IT) Forschungszentrum Jülich GmbH 52428 Jülich Germany

Abstract

AbstractBi2Te3‐based alloys have great market demand in miniaturized thermoelectric (TE) devices for solid‐state refrigeration and power generation. However, their poor mechanical properties increase the fabrication cost and decrease the service durability. Here, this work reports on strengthened mechanical robustness in Bi2Te3‐based alloys due to thermodynamic Gibbs adsorption and kinetic Zener pinning at grain boundaries enabled by MgB2 decomposition. These effects result in much‐refined grain size and twofold enhancement of the compressive strength and Vickers hardness in (Bi0.5Sb1.5Te3)0.97(MgB2)0.03 compared with that of traditional powder‐metallurgy‐derived Bi0.5Sb1.5Te3. High mechanical properties enable excellent cutting machinability in the MgB2‐added samples, showing no missing corners or cracks. Moreover, adding MgB2 facilitates the simultaneous optimization of electron and phonon transport for enhancing the TE figure of merit (ZT). By further optimizing the Bi/Sb ratio, the sample (Bi0.4Sb1.6Te3)0.97(MgB2)0.03 shows a maximum ZT of ≈1.3 at 350 K and an average ZT of 1.1 within 300–473 K. As a consequence, robust TE devices with an energy conversion efficiency of 4.2% at a temperature difference of 215 K are fabricated. This work paves a new way for enhancing the machinability and durability of TE materials, which is especially promising for miniature devices.

Funder

National Natural Science Foundation of China

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3