Single Atom Iron‐Doped Graphic‐Phase C3N4 Semiconductor Nanosheets for Augmented Sonodynamic Melanoma Therapy Synergy with Endowed Chemodynamic Effect

Author:

Feng Guiying1,Huang Hui2,Zhang Min1,Wu Zhuole1,Sun Dandan1,Chen Qiqing1,Yang Dayan1,Zheng Yuanyi3,Chen Yu2ORCID,Jing Xiangxiang1

Affiliation:

1. Department of Ultrasonography Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University 570311 Haikou P. R. China

2. Materdicine Lab, School of Life Sciences Shanghai University Shanghai 200444 P. R. China

3. Department of Ultrasound in Medicine Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Institute of Ultrasound in Medicine 200032 Shanghai P. R. China

Abstract

AbstractSonodynamic therapy (SDT) is a non‐invasive therapeutic modality with high tissue‐penetration depth to induce reactive oxygen species (ROS) generation for tumor treatment. However, the clinical translation of SDT is restricted seriously by the lack of high‐performance sonosensitizers. Herein, the distinct single atom iron (Fe)‐doped graphitic‐phase carbon nitride (C3N4) semiconductor nanosheets (Fe‐C3N4 NSs) are designed and engineered as chemoreactive sonosensitizers to effectively separate the electrons (e) and holes (h+) pairs, achieving high yields of ROS generation against melanoma upon ultrasound (US) activation. Especially, the single atom Fe doping not only substantially elevates the separation efficiency of the e‐h+ pairs involved in SDT, but also can serve as high‐performance peroxidase mimetic enzyme to catalyze the Fenton reaction for generating abundant hydroxyl radicals, therefore synergistically augmenting the curative effect mediated by SDT. As verified by density functional theory simulation, the doping of Fe atom significantly promotes the charge redistribution in the C3N4‐based NSs, which improves their synergistic SDT/chemodynamic activities. Both the in vitro and in vivo assays demonstrate that Fe‐C3N4 NSs feature an outstanding antitumor effect by aggrandizing the sono‐chemodynamic effect. This work illustrates a unique single‐atom doping strategy for ameliorating the sonosensitizers, and also effectively expands the innovative anticancer‐therapeutic applications of semiconductor‐based inorganic sonosensitizers.

Funder

National Natural Science Foundation of China

Shanghai Shuguang Program

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3