From Inside Out: How the Buried Interface, Shell Defects, and Surface Chemistry Conspire to Determine Optical Performance in Nonblinking Giant Quantum Dots

Author:

Singh Ajay1,Majumder Somak1,Thompson Orfield Noah J.1,Sarpkaya Ibrahim1,Nordlund Dennis2ORCID,Bustillo Karen C.3ORCID,Ciston Jim3ORCID,Nisoli Victoria1,Ivanov Sergei A.1,Bowes Eric G.1ORCID,Htoon Han1ORCID,Hollingsworth Jennifer A.1ORCID

Affiliation:

1. Materials Physics & Applications Division Center for Integrated Nanotechnologies Los Alamos National Laboratory Los Alamos NM 87545 USA

2. Stanford Synchrotron Radiation Light Source SLAC National Accelerator Laboratory Stanford CA 94309 USA

3. National Center for Electron Microscopy, Molecular Foundry Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA

Abstract

“Giant” or core/thick‐shell quantum dots (gQDs) are an important class of solid‐state quantum emitter characterized by strongly suppressed blinking and photobleaching under ambient conditions, and reduced nonradiative Auger processes. Together, these qualities provide distinguishing and useful functionality as single‐ and ensemble‐photon sources. For many applications, operation at elevated temperatures and under intense photon flux is desired, but performance is strongly dependent on the synthetic method employed for thick‐shell growth. Here, a comprehensive analysis of gQD structural properties “from the inside out” as a function of shell‐growth method is reported: successive ionic layer adsorption and reaction (SILAR) and high‐temperature continuous injection (HT‐CI), or sequential combinations of the two. Key correlations across synthesis methods, structural features (interfacial alloying, stacking‐fault density and surface‐ligand identity), and performance metrics (quantum yield, single‐gQD photoluminescence under thermal/photo stress, charging behavior and quantum‐optical properties) are identified. Surprisingly, it is found that interfacial alloying is the strongest indicator of gQD stability under stress, but this parameter is not the determining factor for Auger suppression. Furthermore, quantum yield is strongly influenced by surface chemistry and can approach unity even in the case of high shell‐defect density, while introduction of zinc‐blende stacking faults increases the likelihood that a gQD exhibits charged‐state emission.

Funder

Office of Energy Efficiency and Renewable Energy

Office of Science

Los Alamos National Laboratory

Center for Integrated Nanotechnologies

SLAC National Accelerator Laboratory

Publisher

Wiley

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3