Multiscale Computational and Artificial Intelligence Models of Linear and Nonlinear Composites: A Review

Author:

Agarwal Mohit1ORCID,Pasupathy Parameshwaran1ORCID,Wu Xuehai1,Recchia Stephen S.2,Pelegri Assimina A.1ORCID

Affiliation:

1. Mechanical and Aerospace Engineering Rutgers University‐New Brunswick Piscataway NJ 08854 USA

2. Analysis Materials and Prototyping Directorate DEVCOM Armaments Center Military Base 213 NJ‐15 Wharton 07806 NJ USA

Abstract

Herein, state‐of‐the‐art multiscale modeling methods have been described. This research includes notable molecular, micro‐, meso‐, and macroscale models for hard (polymer, metal, yarn, fiber, fiber‐reinforced polymer, and polymer matrix composites) and soft (biological tissues such as brain white matter [BWM]) composite materials. These numerical models vary from molecular dynamics simulations to finite‐element (FE) analyses and machine learning/deep learning surrogate models. Constitutive material models are summarized, such as viscoelastic hyperelastic, and emerging models like fractional viscoelastic. Key challenges such as meshing, data variability and material nonlinearity‐driven uncertainty, limitations in terms of computational resources availability, model fidelity, and repeatability are outlined with state‐of‐the‐art models. Latest advancements in FE modeling involving meshless methods, hybrid ML and FE models, and nonlinear constitutive material (linear and nonlinear) models aim to provide readers with a clear outlook on futuristic trends in composite multiscale modeling research and development. The data‐driven models presented here are of varying length and time scales, developed using advanced mathematical, numerical, and huge volumes of experimental results as data for digital models. An in‐depth discussion on data‐driven models would provide researchers with the necessary tools to build real‐time composite structure monitoring and lifecycle prediction models.

Funder

National Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3