Iontophoresis‐Driven Microneedle Arrays Delivering Transgenic Outer Membrane Vesicles in Program that Stimulates Transcutaneous Vaccination for Cancer Immunotherapy

Author:

Wang Maoze1,Yan Ge1,Xiao Qiyao1,Zhou Nan1,Chen Hao-Ran1,Xia Wei2,Peng Lihua134ORCID

Affiliation:

1. College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 P. R. China

2. Division of Applied Materials Science Department of Materials Science and Engineering Uppsala University Uppsala 751 05 Sweden

3. Jinhua Institute of Zhejiang University Jinhua 321299 Zhejiang P. R. China

4. State Key Laboratory of Quality Research in Chinese Medicine Macau University of Science and Technology Macau 999078 P. R. China

Abstract

Transdermal delivery of antigen and chemokine proteins that activates the maturation of skin dendritic cells (DCs) and direct the migration of activated DCs to lymph and spleen is an important alternative to conventional vaccines. However, stratum corneum forms a barrier to skin penetration. The poor cellular uptake of free antigens and chemokines also limits transcutaneous immunization efficacy. In this work, a pair of iontophoresis‐driven microneedle patches is constructed, of which, two kinds of outer membrane vesicles (OMVs) derived from Escherichia coli transformed by plasmid encoding gp100 (IPMN‐G) and chemokine ligand 21 (IPMN‐C) are incorporated within microneedles, respectively. The topical application of IPMN‐G and IPMN‐C shows the effectiveness of transdermally delivering gp100 and CCL21 secreting vesicles to skin DCs. With iontophoresis as a driving generator, the release and uptake of transgenic OMVs in target cells are significantly enhanced, with transcutaneous immunization initiated. The in vivo applications of IPMN‐G and IPMN‐C with a 12 h interval retard the progression and prevent the occurrence of tumor spheroids. IPMN‐GC is shown as a promising triplatform in engineering transgenic OMV‐incorporated microneedles, driven by iontophoresis into a transcutaneous vaccine, providing a noninvasive system for the transdermal delivery of antigen and chemokine proteins for transcutaneous vaccination‐meditated immunotherapy.

Publisher

Wiley

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3