The Electrocatalytic Activity of Au Electrodes Changes Significantly in Various Na+/K+ Supporting Electrolyte Mixtures

Author:

Sarpey Theophilus K.1ORCID,Himmelreich Adrian V.1ORCID,Song Kun‐Ting1,Gubanova Elena L.1ORCID,Bandarenka Aliaksandr S.12ORCID

Affiliation:

1. Physics of Energy Conversion and Storage TUM School of Natural Sciences (Physik‐Department) Technical University of Munich James‐Franck‐Str. 1 85748 Garching Germany

2. Catalysis Research Center TUM Technical University of Munich Ernst‐Otto‐Fischer‐Straße 1 85748 Garching Germany

Abstract

The potential of maximum entropy (PME) is an indicator of extreme disorder at the electrode/electrolyte interface and can predict changes in catalytic activity within electrolytes of varying compositions. The laser‐induced current transient technique is employed to evaluate the PME for Au polycrystalline (Aupc) electrodes immersed in Ar‐saturated cation electrolyte mixtures containing potassium and sodium ions at pH = 8. Five cation ratios (0.5 M K2SO4:0.5 M Na2SO4 = 0:1, 0.25:0.75, 0.5:0.5, 0.75:0.25, and 1:0) are explored, considering earlier studies that unveil cation‐dependent shifts at near‐neutral pH. Moreover, for all electrolyte compositions, electrochemical impedance spectroscopy is utilized to determine the double‐layer capacitance (CDL), the minimum of which should be close to the potential of zero charge (PZC). By correlating cation molar ratios with the PMEs and PZCs, the impact on the model oxygen reduction reaction (ORR) activity, assessed via the rotating disk electrode method, is analyzed. The results demonstrate a linear relationship between electrolyte cation mixtures and PME, while ORR activity exhibits an exponential trend. This observation validates the PME–activity link hypothesis, underscoring electrolyte components’ pivotal role in tailoring interfacial properties for electrocatalytic systems. These findings introduce a new degree of freedom for designing optimal electrocatalytic systems by adjusting various electrolyte components.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3