High Immunogenic Cuproptosis Evoked by In Situ Sulfidation‐Activated Pyroptosis for Tumor‐Targeted Immunotherapy of Colorectal Cancer

Author:

Xiao Wentao1,Qu Kuiming1,Zhang Wei1,Lai Lunhui1,He Lei1,Cheng Fang1ORCID,Wang Lianhui1ORCID

Affiliation:

1. State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) Nanjing University of Posts and Telecommunications Nanjing 210023 P. R. China

Abstract

Despite the great potential of cuproptosis in tumor therapy, the current cuproptosis‐based therapy still suffers from compromised efficiency of immune activation. Pyroptosis, a proinflammatory cell death modality, provides a good opportunity to induce immunogenic cell death (ICD) and promote systemic immune response. However, the synergistic cuproptosis and pyroptosis therapy has not been fully explored. Herein, it is discovered that Cu(II)‐based metal–organic framework (MOF) nanoparticles (NPs) can synergistically induce cuproptosis and pyroptosis to evoke ICD for high‐efficiency tumor‐targeted immunotherapy. Although MOF‐199 has been widely used in tumor therapy, the immunogenicity is still unclear. Pluronic F127‐modified MOF‐199 NPs (F127MOF‐199 NPs) show dual‐responsiveness to glutathione (GSH) and hydrogen sulfide (H2S). Once entering cancer cells, F127MOF‐199 NPs dissociate in GSH‐enriched tumor microenvironment (TME) to release copper ion and induce copper‐overload‐mediated cuproptosis. Meanwhile, F127MOF‐199 NPs transform to Cu2−xS NPs by in situ sulfidation under H2S‐enriched colorectal cancer (CRC) TME. Under photothermal and chemodynamic therapy (PTT/CDT) of Cu2−xS NPs, caspase‐3 is activated and gasdermin E (GSDME)‐related pyroptosis is triggered. The synergistic cuproptosis and pyroptosis have proved the superior antitumor immunity effect in both in vitro and in vivo experiments. This work provides a new strategy to achieve tumor‐targeted immunotherapy with high efficiency by simple F127MOF‐199 NPs.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3