Efficient‐Residual Net—A Hybrid Neural Network for Automated Brain Tumor Detection

Author:

Sachdeva Jainy1,Sharma Deepanshu1ORCID,Ahuja Chirag Kamal2,Singh Arnavdeep1

Affiliation:

1. Department of Electrical and Instrumentation Engineering TIET Patiala India

2. Department of Radiodiagnosis and Imaging PGIMER Chandigarh India

Abstract

ABSTRACTA multiscale feature fusion of Efficient‐Residual Net is proposed for classifying tumors on brain Magnetic resonance images with solid or cystic masses, inadequate borders, unpredictable cystic and necrotic regions, and variable heterogeneity. Therefore, in this research, Efficient‐Residual Net is proposed by efficaciously amalgamating features of two Deep Convolution Neural Networks—ResNet50 and EffficientNetB0. The skip connections in ResNet50 have reduced the chances of vanishing gradient and overfitting problems considerably thus learning of a higher number of features from input MR images. In addition, EffficientNetB0 uses a compound scaling coefficient for uniformly scaling the dimensions of the network such as depth, width, and resolution. The hybrid model has improved classification results on brain tumors with similar morphology and is tested on three internet repository datasets, namely, Kaggle, BraTS 2018, BraTS 2021, and real‐time dataset from Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh. It is observed that the proposed system delivers an overall accuracy of 96.40%, 97.59%, 97.75%, and 97.99% on the four datasets, respectively. The proposed hybrid methodology has given assuring results of 98%–99% of other statistical such parameters as precision, negatively predicted values, and F1 score. The cloud‐based web page is also created using the Django framework in Python programming language for accurate prediction and classification of different types of brain tumors.

Funder

Indian Council of Medical Research

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3