Designing mechanically reinforced filler network for thin and robust composite polymer electrolyte

Author:

Cheng Guangzeng1,Wang Huanlei1ORCID,Wu Jingyi1ORCID

Affiliation:

1. School of Materials Science and Engineering Ocean University of China Qingdao People's Republic of China

Abstract

AbstractDeveloping novel solid electrolytes with high performance is of great significance for the practical application of lithium metal batteries. Among all the developed solid electrolytes, composite polymer electrolytes (CPEs) have been deemed one of the most viable candidates because of their comprehensive performance. Nevertheless, the random distribution of inorganic filler nanoparticles may cause discontinuities in ion transport and low mechanical strength. Therefore, the introduction of a filler network with fast ion conduction is an effective strategy to provide continuous ion transport and mechanical support. The mechanically reinforced filler network enhances the mechanical strength of the CPE, providing opportunities to reduce the thickness of CPE. In this review, the progress of mechanically reinforced filler structures in CPE is summarized, along with the introduction of mechanically reinforced filler networks with random and ordered structures and electrode‐integrated CPE with mechanically reinforced filler networks. Finally, challenges and possible future research directions for mechanically reinforced filler network CPE are presented.

Funder

Taishan Scholar Project of Shandong Province

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3