Enhanced Laccase Activity and Stability as Crosslinked Enzyme Aggregates on Magnetic Copper Ferrite Nanoparticles for Biotechnological Processes

Author:

Escalante Morales Laura Karina1,Sengar Prakhar1,Dorado Baeza Andrea1,Vazquez‐Duhalt Rafael1,Chauhan Kanchan1ORCID

Affiliation:

1. Centro de Nanociencias y Nanotecnología Universidad Nacional Autónoma de México. Km 107 carretera Tijuana-Ensenada Ensenada Baja California 22860 México

Abstract

AbstractHighly stable and reusable magnetic crosslinked enzyme aggregates (m‐CLEAS) of laccase are synthesized with simultaneous improved enzymatic activity. Magnetic copper ferrite nanoparticles (CFNPs) were synthesized by solvothermal procedure with an average size of ~8 nm. The nanometric m‐CLEAS were formed by co‐aggregation of enzyme with CFNPs and crosslinked using glutaraldehyde. Different mass ratios of CFNPs:Laccase were assayed (1 : 2, 1 : 3, and 1 : 6), where 1 : 6 resulted in the highest activity recovery (97 %). The m‐CLEAS showed an average size of ~239 nm, ~24 % enzyme immobilization efficiency, and loading as high as 1.75 g of protein per g of support. As expected, m‐CLEAS oxidized the substrate with a higher transformation rate (kcat) and catalytic efficiency (kcat/Km) than the free enzyme. m‐CLEAS showed superior storage and thermostability compared to free enzyme and non‐magnetic CLEAS. In particular, the m‐CLEAS showed ~150 % and ~100 % residual activity after 30 days of storage at 4 °C and room temperature, respectively. Furthermore, m‐CLEAS showed good recyclability, retaining ~78 % and ~54 % laccase activity after 5 and 10 cycles of reuse, respectively. This work highlights the facile and cost‐effective synthesis of nanometric m‐CLEAS with exceptional storage stability and simultaneously improved laccase activity, making them suitable for a range of green industrial processes.

Publisher

Wiley

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3