Disclosing the Role of Gold on Palladium – Gold Alloyed Supported Catalysts in Formic Acid Decomposition

Author:

Barlocco Ilaria1,Capelli Sofia1,Lu Xiuyuan2,Bellomi Silvio1,Huang Xiaohui3,Wang Di34,Prati Laura1,Dimitratos Nikolaos5,Roldan Alberto2,Villa Alberto1

Affiliation:

1. Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 20133 Milano Italy

2. Cardiff Catalysis Institute School of Chemistry Cardiff University Main Building, Park Place CF10 3AT Cardiff United Kingdom

3. Institute of Nanotechnology Karlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany

4. Karlsruhe Nano Micro Facility (KNMF) Karlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany

5. Dipartimento di Chimica Industriale e dei Materiali ALMA MATER STUDIORUM Università di Bologna Viale Risorgimento 4 40136 Bologna Italy

Abstract

AbstractHerein, we report the synthesis of preformed bimetallic Pd‐Au nanoparticles supported on carbon nanofibers with different Pd : Au atomic ratio (nominal molar ratio: 8–2, 6–4, 4–6, 2–8) and the corresponding Pd and Au monometallic catalysts by sol immobilization method. The obtained materials were characterized thoroughly by Transmission Electron Microscopy (TEM), X‐ray photoelectron spectroscopy (XPS) and inductively coupled plasma optical emission spectroscopy (ICP‐OES). The catalytic performances of the Pd‐Au catalysts were evaluated in the aqueous phase dehydrogenation of formic acid (FA) at room temperature obtaining enhanced activity, stability and selectivity compared to the monometallic systems. In particular, Pd6Au4 and Pd8Au2 showed the best combination of catalytic properties, i. e., high selectivity to H2 and improved catalytic stability. Density functional theory (DFT) calculations on Pd15, Au15 and Pd9Au6 clusters supported on a carbon sheet were then simulated to provide atomic level understanding to the beneficial effect of gold observed in the experimental results. Au15 barely adsorb FA, while Pd15 possesses an adsorption energy higher than Pd9Au6. Dehydrogenation and dehydration pathways were followed on all these models. For Pd9Au6, the most favourable route was the formation of carbon dioxide and hydrogen. Analysis of the electronic structures was also performed on the different models showing a stronger interaction between the bimetallic system and the support proving the alloy superior stability.

Funder

Karlsruhe Institute of Technology

China Scholarship Council

Cardiff University

Engineering and Physical Sciences Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3