Recent Advances in Hydrogen Production from Hybrid Water Electrolysis through Alternative Oxidation Reactions

Author:

Fan Li1,Wang Di1,Ma Kui1,Zhou Chang‐An1,Yue Hairong12ORCID

Affiliation:

1. Low-Carbon Technology and Chemical Reaction Engineering Laboratory School of Chemical Engineering Sichuan University Chengdu 610065 P. R. China

2. Institute of New Energy and Low-Carbon Technology Sichuan University Chengdu 610207 P. R. China

Abstract

AbstractWater splitting driven by green electricity from renewable energy input to produce H2 has been widely considered as a promising strategy to realize the goals for future clean energy. However, in conventional overall water electrolysis, the sluggish kinetics and high onset potential of anode OER limit the cathode HER rate, which lowers the overall energy conversion efficiency. Over the past decade, an innovative concept involving hybrid water electrolysis by replacing OER with thermodynamically more favorable oxidation reactions coupling with the cathodic hydrogen evolution reaction has been devised to alleviate the limitations associated with the anodic OER. In this review, we summarize the recent progress concerning electrochemical hydrogen production by coupling the oxidation of molecules incorporating hydroxyl, aldehyde, and amino functional groups, with special emphasis on alternative reactions involving CO and sulfide. Finally, the remaining challenges and future perspectives are also discussed. We hope this review will accelerate the development of novel strategies for practicable H2 production from hybrid water electrolysis.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3