Upcycling of Polypropylene Wastes via Catalytically C−H Modification with Polar Olefins

Author:

Zhou Shuangjing1,Zhang Zongnan1,Zeng Rong1ORCID

Affiliation:

1. School of Chemistry Xi'an Jiaotong University Xi'an Xi'an 710049 P. R. China

Abstract

AbstractWhile polypropylene (PP) is one of the most widely used polyolefin materials, its post‐functionalization has been a continuously researched topic in the polymer field since it could significantly improve physical and chemical properties by introducing polar groups, beneficial for development of the next generation of polyolefin materials. In this work, we describe the development of a visible‐light promoted, environmentally friendly iron‐catalyzed strategy and establishing of the reaction scope for C−H alkylated modification of polypropylene. Under our conditions, various polypropylenes could be functionalized with diverse polar alkenes with good levels of functionalization (LOF). The properties of the resulting polymers were investigated by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and tensile testing. Polypropylene wastes could also be upcycled. While the incorporation of the polyglycol groups enhanced hydrophilicity, the installation of the ester groups increased the miscibility with other polymers by acting as a compatibilizer for polystyrene and polyethylene.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3