Biocatalytic Oxidative Amination of para‐Substituted Phenols

Author:

Guo Yiming1,Ashley Ben1,Marić Ivana1,Saifuddin Mohammad1,Dunleavy Tomás1,Onet Andrei1,Fraaije Marco W.1ORCID

Affiliation:

1. Molecular Enzymology Group, Groningen Biomolecular Sciences and Biotechnology Institute University of Groningen Nijenborgh 4 9747AG Groningen The Netherlands

Abstract

AbstractBiocatalytic preparation of chiral amines is a large and burgeoning field in organic chemistry. Many enzymes and routes have been published, including transaminases, imine reductases, reductive aminases, amine dehydrogenases and others. However, all these routes rely on some sacrificial substrate, in the form of either amine donor or cofactor regeneration substrate. Herein, we report the direct oxidative amination of p‐substituted phenols catalyzed by an evolved flavoprotein oxidase, with the consumption of only substrate and O2, and release of H2O2. The substrate scope of the reaction is studied, and is tolerant of a diverse panel including ammonia, primary and secondary amines, and amino acids. The reaction is later employed at preparative scale to generate aminated products in 50–80 % yield. This report establishes flavoprotein oxidase as a new and economical member of the chemist's toolkit for biocatalytic generation of chiral amines, acting as oxidative aminase.

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3