Affiliation:
1. Max-Planck-Institut für Kohlenforschung Heterogeneous Catalysis Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
2. Max-Planck-Institut für Eisenforschung Max-Planck-Straße 1 40237 Düsseldorf Germany
Abstract
AbstractMechanochemistry has proven to be an excellent green synthesis method for preparing organic, pharmaceutical, and inorganic materials. Mechanocatalysis, inducing a catalytic reaction by mechanical forces, is an emerging field because neither external temperature nor pressure inputs are required. Previous studies reported enhanced catalytic activity during the mechanical treatment of supported gold catalysts for CO oxidation. So far, the processes inside the milling vessel during mechanocatalysis could not be monitored. In this work, the results of high‐energy operando X‐ray powder diffraction experiments and online gas analysis will be reported. A specific milling setup with a custom‐made vessel and gas dosing system was developed. To prove the feasibility of the experimental setup for operando diffraction studies during mechanocatalysis, the CO oxidation with Au@Fe2O3as a catalyst was selected as a well‐known model reaction. The operando studies enabled monitoring morphology changes of the support as well as changes in the crystallite size of the gold catalyst. The change of the crystal size is directly correlated to changes in the active surface area and thus to the CO2yield. The studies confirm the successful implementation of the operando setup, and its potential to be applied to other catalytic reactions.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献