Species asynchrony stabilizes productivity over 20 years in Northeast China

Author:

Jia Bo1ORCID,He Jingyuan1,Wang Xinjie1

Affiliation:

1. Beijing Forestry University Beijing China

Abstract

AbstractThe stability of forest productivity can reflect the functioning of forest ecosystems. It is a crucial topic to understand the relationship between biodiversity and ecosystem functions in ecology. Although previous studies have made great progress in understanding the effects of diversity, species asynchrony, and other factors on community biomass and productivity, few studies have explored how these factors affect the temporal stability of productivity. In this study, we hypothesized that diversity, species asynchrony, and topography would directly or indirectly impact the temporal stability of productivity. To test this hypothesis, we used a multiple regression model and a piecewise structural equation model based on the inventory data over 20 years (5‐year intervals) from 1992 to 2012 at Jingouling Forest Farm in Northeast China. Our results showed that species asynchrony was the main driving factor affecting the temporal stability of productivity. Structural diversity significantly decreased community stability, while species diversity had a nonsignificant effect on it. We found the combination of a multiple regression model and a piecewise structural equation model is an effective method for evaluating the factors that influence community stability. The effect of species asynchrony is crucial for understanding the ecological mechanisms underlying the diversity–stability relationship in mixed forests.

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3