Turning observations into biodiversity data: Broadscale spatial biases in community science

Author:

Geurts Ellyne M.1ORCID,Reynolds John D.2,Starzomski Brian M.1

Affiliation:

1. School of Environmental Studies University of Victoria Victoria British Columbia Canada

2. Earth to Ocean Research Group, Department of Biological Sciences Simon Fraser University Burnaby British Columbia Canada

Abstract

AbstractBiodiversity community science projects are growing rapidly in popularity. The enormous amounts of data generated by these programs are transforming how we conduct ecological research and conservation management. However, as with other biodiversity surveys, community science datasets suffer from biases in time and locations of observations. To better use these data, we modeled the spatial biases present in the popular community science platform, iNaturalist. iNaturalist uses crowdsourcing to collect georeferenced and time‐stamped observations of all taxa worldwide. With its wealth of biodiversity data, iNaturalist is now being used to answer a broad range of questions in ecology and conservation, but little is known about the platform's spatial biases. We focus on the more than 1.75 million iNaturalist observations available (as of December 2021) from British Columbia, Canada, a region with a strong community science presence and diversity of ecosystems. Using machine learning and species distribution modeling, we examined which landscape factors (e.g., protected areas, roads, human population density, habitat zones, elevation) were most important in determining where observations are taken, and we created a predicted probability map revealing how likely different regions are to be sampled by community scientists. We found strong road biases for observations in iNaturalist, with over 94% of observations within 1 km of roads. In addition, human population density and broad habitat ecosystem zones played a large role in predicting where iNaturalist observations occur across the landscape. These methods demonstrate tools for modeling the effects of spatial biases in large opportunistic datasets that can then be used to produce more accurate species distribution and biodiversity models from community science data.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Reference87 articles.

1. Mapping the biodiversity of tropical insects: species richness and inventory completeness of African sphingid moths

2. Target‐group backgrounds prove effective at correcting sampling bias in Maxent models

3. Methods for broad‐scale plant phenology assessments using citizen scientists’ photographs

4. BC iNaturalist Program.2021.“BC iNaturalist.”https://www.bcinat.com/.

5. BC Parks.2018.“BC Parks 2017/18 Statistics Report.”https://bcparks.ca/about/news-publications/reports-surveys/.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3