A neural network copula function approach for solving joint basic probability assignment in structural reliability analysis

Author:

Yang Rui‐Shi12,Sun Li‐Jun12,Li Hai‐Bin12ORCID,Yang Yong12

Affiliation:

1. School of Science Inner Mongolia University of Technology Hohhot China

2. Inner Mongolia Key Laboratory of Statistical Analysis Theory for Life Data and Neural Network Modelling Inner Mongolia University of Technology Hohhot China

Abstract

AbstractApplying evidence theory to structural reliability analysis under epistemic uncertainty, it is necessary to consider the correlation of evidence variables. Among them, solving the joint basic probability assignment (BPA) of the evidence variables is a crucial link. In this study, a solution method of joint BPA based on neural network copula function is proposed. This method is to automatically construct copula function through neural network, which avoids the process of selecting the optimal copula function. Firstly, the neural network copula function is constructed based on the sample set of evidence variables. Then, the expression for solving the joint BPA using the neural network copula function is derived through vectors. Furthermore, the expression is used to map the marginal BPA of evidence variables to joint BPA, thus realizing the solution of joint BPA. Finally, the effectiveness of this method is verified by three examples. The results show that the neural network copula function describes the data distribution better than the optimal copula function selected by the traditional method. In addition, there is actually an error in solving the reliability intervals using the traditional optimal copula function method, whereas the results of this paper's neural network copula function method are more accurate and better for decision making.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3