Effects of current intensities on material removal rate, electrode wear rate, and surface roughness of machining high carbon high chromium steel

Author:

Rakesh P. K.1,Gupta M. K.2ORCID,Mahto J. N.3,Rajput N. S.4

Affiliation:

1. Mechanical Engineering Department National Institute of Technology Uttarakhand Srinagar Garhwal XXXX India

2. Mechanical Engineering Department Hemavati Nandan Bahuguna Garhwal University (A Central University) Srinagar Garhwal XXXX Uttarakhand India

3. Mechanical Engineering Department B.I.T. Sindri Dhanbad 246174 Jharkhand India

4. Department of Mechanical Engineering Amity University Rajasthan Jaipur 246174 India

Abstract

AbstractThe electrical discharge machining is very successful and generally recognized for producing complicated shapes and small openings with exceptional precision. The objective of this study is to assess the impact of different electrical discharge machining parameters on the attributes of the machining process. The evaluation of the machining process was conducted based on the workpiece‘s material removal rate, the rate at which the electrodes wear, and the level of surface roughness. Simultaneously achieving a high material removal rate, low electrode wear rate, and high surface roughness is not possible with a specific combination of approaches due to their contradicting nature. Frequently, it is necessary to independently apply many measures instantaneously in order to assess their impact on various responses. This research investigates the machining of high carbon high chromium steel making use of electrical discharge machining with aluminum, copper, and graphite electrodes. The study focuses on the impact of different current intensities on the rate of material removal, electrode wear, and surface roughness. The experimental results demonstrate that the highest material removal rate (mmcubicmin−1) is achieved at a current density of 12 A when using a copper electrode (54.67), as opposed to aluminum electrode (22.91) and graphite electrode (29.43).

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3