Property investigation of functionally graded materials leaf spring plate fabricated through stir casting process by using new gradient evaluation method

Author:

Singh R. K.1ORCID,Singh R. C.1

Affiliation:

1. Department of Mechanical Engineering Delhi Technological University Delhi 110042 India

Abstract

AbstractAutomobile and aviation industries require lightweight solutions in the suspension system to improve overall performance and payload capacity. This can be achieved by materials having high strength to weight ratio. Fiber composites, known for their lightweight and high strength, face a major issue of delamination, which shortens the lifespan of fiber‐reinforced polymer leaf springs. Current researchers are emphasizing the use of functionally graded materials as a promising alternative to tackle this problem. In the present work, a functionally graded leaf spring plate was fabricated using stir casting technique with five layered gradations in the mid portion. The amount of molten material required for each gradation was ensured using a novel experimental technique. On the other hand, the matrix and reinforcement have been adopted from the output of the analysis conducted using CES EduPack 2019 software. Low density and high fatigue strength were primary focal point for the consideration of matrix and reinforcement materials. Aluminium 7075 and boron carbide were considered as matrix and reinforcement materials respectively. Stir casting technique, used in the present work, is simple, suitable and cost effective technique which creates a gradation at central part of the leaf.

Publisher

Wiley

Reference42 articles.

1. A new theory of plate springs

2. Analysis and optimization of a composite leaf spring

3. Automobile leaf springs from composite materials

4. Y. Yamada T. Kuwabara Materials for springs Springer Science & Business Media 2007.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3